Language Model Adaptation Based on PLSA of Topics and Speakers for Automatic Transcription of Panel Discussions
نویسندگان
چکیده
Appropriate language modeling is one of the major issues for automatic transcription of spontaneous speech. We propose an adaptation method for statistical language models based on both topic and speaker characteristics. This approach is applied for automatic transcription of meetings and panel discussions, in which multiple participants speak on a given topic in their own speaking style. A baseline language model is a mixture of two models, which are trained with different corpora covering various topics and speakers, respectively. Then, probabilistic latent semantic analysis (PLSA) is performed on the same respective corpora and the initial ASR result to provide two sets of unigram probabilities conditioned on input speech, with regard to topics and speaker characteristics, respectively. Finally, the baseline model is adapted by scaling N-gram probabilities with these unigram probabilities. For speaker adaptation purpose, we make use of a portion of the Corpus of Spontaneous Japanese (CSJ) in which a large number of speakers gave talks for given topics. Experimental evaluation with real discussions showed that both topic and speaker adaptation reduced test-set perplexity, and in total, an average reduction rate of 8.5% was obtained. Furthermore, improvement on word accuracy was also achieved by the proposed adaptation method. key words: language model, topic adaptation, speaker adaptation, PLSA, automatic speech recognition
منابع مشابه
Language model adaptation based on PLSA of topics and speakers
We address an adaptation method of statistical language models to topics and speaker characteristics for automatic transcription of meetings and discussions. A baseline language model is a mixture of two models, which are trained with different corpora covering various topics and speakers, respectively. Then, probabilistic latent semantic analysis (PLSA) is performed on the same respective corp...
متن کاملAutomatic Transcription of Meetings Using Topic-oriented Language Model Adaptation
This paper presents an automatic speech recognition (ASR) system dedicated for meetings of the National Congress of Japan. The distinctive features of the congressional meeting speech are wide distribution and frequent change of topics. For more accurate transcription, such topics should be emphasized in a language model one after another. Therefore, we introduce two approaches for topic adapta...
متن کاملUnsupervised speaker indexing using anchor models and automatic transcription of discussions
We present unsupervised speaker indexing combined with automatic speech recognition (ASR) for speech archives such as discussions. Our proposed indexing method is based on anchor models, by which we define a feature vector based on the similarity with speakers of a large scale speech database. Several techniques are introduced to improve discriminant ability. ASR is performed using the results ...
متن کاملLanguage modeling using PLSA-based topic HMM
In this paper, we propose a PLSA-based language model for sports-related live speech. This model is implemented using a unigram rescaling technique that combines a topic model and an n-gram. In the conventional method, unigram rescaling is performed with a topic distribution estimated from a recognized transcription history. This method can improve the performance, but it cannot express topic t...
متن کاملAutomatic Transcription of Discussions Using Unsupervised Speaker Indexing
We present unsupervised speaker indexing combined with automatic speech recognition (ASR) for speech archives such as discussions. Our proposed indexing method is based on anchor models, by which we define a feature vector based on the similarity with speakers of a large scale speech database, and we incorporate several techniques to improve discriminant ability. ASR is performed using the resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 88-D شماره
صفحات -
تاریخ انتشار 2005